Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ning Li, ${ }^{\text {a }}$ * Peng-Mian Huang, ${ }^{\text {b }}$ Xiao-Li Xiong, ${ }^{\text {a }}$ Xiao-Dong Xu ${ }^{\text {a }}$ and Zhong-Jie Shao ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Pharmaceuticals \& Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
tdInjohn2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.043$
$w R$ factor $=0.112$
Data-to-parameter ratio $=16.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,6-Dibromo-9-(4-tolylsulfonyl)-9H-carbazole

The title compound, $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}$, was synthesized by N alkylation of 4-methylbenzenesulfonyl chloride with 3,6-dibromo- 9 H -carbazole. The carbazole ring system is essentially planar, with a mean deviation of $0.024 \AA$, and makes a dihedral angle of $75.46(9)^{\circ}$ with the plane of the benzene ring.

Comment

Carbazole derivatives substituted by N -alkylation show useful pharmaceutical properties (Buu-Hoï \& Royer, 1950; Harfenist \& Joyner, 1983; Caulfield et al., 2002; Harper et al., 2002). This paper reports the structure of 3,6-dibromo-9-(4-tolylsulfonyl)9 H -carbazole, (I), which was synthesized by N -alkylation of 4methylbenzenesulfonyl chloride with 3,6-dibromo-9H-carbazole.

The carbazole ring system is essentially planar, with a mean deviation of $0.024 \AA$. The dihedral angle formed between the carbazole ring system and the plane of the benzene ring is 75.46 (1) ${ }^{\circ}$. The $\mathrm{C}-\mathrm{Br}$ distances are 1.915 (4) and 1.916 (4) A, consistent with literature values (Allen et al., 1987).

Experimental

The title compound, (I), was prepared according to the procedure of Chakrabarti et al. (1989). 3,6-Dibromo-9H-carbazole (1.95 g) (Smith et al., 1992) in a solution of dimethylformamide (25 ml) and benzene $(25 \mathrm{ml})$ was treated with sodium hydride $(0.168 \mathrm{~g})$ in an ice bath for 30 min . To the cold stirred solution, 4-methylbenzenesulfonyl chloride $(1.12 \mathrm{~g})$ was added and the mixture stirred at room temperature for a further 4 h . The resulting mixture was then poured into water (40 ml) and extracted with benzene (100 ml). After drying

Figure 1
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
the benzene extracts over anhydrous sodium sulfate, filtration and concentration, the solid product was recrystallized from EtOH , giving crystals of (I) (yield: 1.36 g , 98%; m.p. 494 K). Compound (I) (40 mg) was dissolved in a mixture of chloroform $(6 \mathrm{ml})$ and ethanol (2 ml), and the solution was kept at room temperature for 10 d . Natural evaporation of the solution gave colourless crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=479.18$
Monoclinic, $P 2_{1} / c$
$a=8.312$ (4) \AA
$b=20.573(11) \AA$
$c=11.374(6) \AA$
$\beta=106.867$ (9) ${ }^{\circ}$
$V=1861.3(16) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.413, T_{\text {max }}=0.573$
(expected range $=0.385-0.534)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.113$
$S=1.04$
3733 reflections
227 parameters
H-atom parameters constrained

$Z=4$

$D_{x}=1.710 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=4.48 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.24 \times 0.20 \times 0.14 \mathrm{~mm}$

10105 measured reflections 3733 independent reflections 2508 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$ $\theta_{\text {max }}=26.4^{\circ}$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0552 P)^{2}\right. \\
\quad+0.1434 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.003 \\
\Delta \rho_{\max }=0.67 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.65 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
Part of the packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds.

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.54	$3.450(6)$	166

Symmetry code: (i) $x+1, y, z$.
All H atoms were included in the riding model approximation, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and $0.96 \AA$ (methyl), and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1997). SADABS (Version 2.0), SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Buu-Hoï, N. P. \& Royer, R. (1950). J. Org. Chem. 15, 123-130.
Caulfield, T., Cherrier, M. P., Combeau, C. \& Mailliet, P. (2002). European Patent No. 1253141.
Chakrabarti, A., Goutam, K. B. \& Chakraborty, D. P. (1989). Tetrahedron, 45, 5059-5064.
Harfenist, M. \& Joyner, C. T. (1983). US Patent No. 4379160.
Harper, R. W., Lin, H. S. \& Richett, M. E. (2002). World Patent No. 02079154.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, K., James, D. M., Mistry, A. G., Bye, M. R. \& Faulkner, D. J. (1992). Tetrahedron, 48, 7479-7488.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

